
Real-time Multi-view Depth Generation Using
CUDA Multi-GPU

Eunsang Ko, Yunseok Song, and Yo-Sung Ho
Gwangju Institute of Science and Technology (GIST)

123, Cheomdangwagi-ro, Buk-gu, Gwangju 500-712, Rep. of Korea
E-mail: {esko, ysong, hoyo}@gist.ac.kr

Abstract In this paper, we propose a real-time multi-view
depth generation method using compute unified device
architecture (CUDA) multi-graphics processing units (GPU). The
objective is to generate multi-view depth maps in real-time. We
employ eight color cameras and three depth cameras. After
capturing multi-view color and depth data, we warp the depth
information to color camera positions. Then joint bilateral
filtering (JBF) is performed to fill empty regions. Such a
procedure is accelerated by CUDA which is one of general-
purpose computing on GPU (GPGPU). As a result, depth maps of
eight views are generated at a rate of 23 frames per second (fps)
on a single GPU computer. When using a multi-GPU computer,
depth generation at 34 fps was achieved.

Keywords CUDA Multi-GPU; Multi-view Depth Generation;

I. INTRODUCTION
As the broadcasting system has grown, 3D contents have

been developed at the same time. The 3D contents allow the
viewer to experience natural depth perception. In general, multi-
view depthmaps are required to generate the 3D contents. Multi-
view depth maps are acquired from multi-view camera system.
Depth maps contain distance value between camera and object.
Depth maps can be captured by depth cameras via time-of-flight
(ToF) [1, 2].

However, due to low-resolution of depth camera, depth maps
must be up-sampled more high-resolutions for creating 3D
contents [3]. Besides, the number of depth cameras can be used
up to three and each depth map is captured using one computer
because of ToF frequency problem. Therefore, for generating
multi-view depth maps, original depth maps are required image
processing such as 3D warping and up-sampling [2].

Although up-sampler is slow, we can obtain up-sampled
depth maps in real-time using compute unified device
architecture (CUDA). CUDA has developed by NVIDIA
Corporation. CUDA is one of general-purpose computing on
graphics processing units (GPGPU). Actually, a lot of
applications have achieved their objective using CUDA because
GPU has many stream multiprocessor (SM), each SM can
execute threads at the same time. Also, CUDA applied
application can parallelize and optimize the operation using
CUDA multi-GPU because of extendibility of CUDA [4, 5].

In this paper, we propose a real-time multi-view depth
generation method using CUDA multi-GPU. The objective is to
generate multi-view depth maps in real-time using color and
depth images from a multi-view camera system.

Fig. 1 Multi-view camera system

II. MULTI-VIEWDEPTHGENERATION SYSTEMDESIGN

We set up the multi-view camera system as shown in Fig. 1.
Eight color cameras (Basler Pilot piA1900-32gc GigE) are
positioned above three depth cameras (Mesa Imaging SR4000).
After configuring the multi-view camera system, we progress
camera calibration, capture a single object at a blue-screen
studio, and multi-view image rectification. Camera calibration is
the process of estimating camera parameters. Multi-view image
rectification is the process of correcting alignment discrepancies
in color cameras onto a common image plane [2].

Next, for up-sampling the depth images, we warp the depth
information to corresponding color camera positions. So we can
acquire depth maps with the color image resolutions as long as
the number of color cameras. Then we execute joint bilateral
filtering (JBF) to fill empty regions using object information that
is obtained by distinguishing blue-screen color.

Fig. 2 represents the overall procedure of multi-view depth
generation.

Fig. 2 Overall procedure of multi-view depth generation

ICESIT 2014 Conference Proceeding

- 103 -



Fig. 3 Overall procedure of proposed multi-view depth generation method

III. PROPOSEDMULTI-VIEWDEPTHGENERATIONMETHOD

The proposed multi-view depth generation method is
processed by CUDA multi-GPU. Fig. 3 represents the overall
procedure of proposed method. This method operation can be
divided into the following five steps.

A. Pre-processing
Pre-processing comprises three steps: checking the number

of color cameras, depth cameras, and graphics card, and pre-
calculating warping matrices and Gaussian filter table for 3D
warping and JBF, respectively. Pre-processing steps are
essential for fast image processing.

1) Checking the number of cameras and graphics card:
First, we check the number of color cameras, depth cameras and
graphics card. Multi-GPU applied application is fast, but there
are lots of restrictions. A typical restriction is each device
cannot share their memory because each GPU has their own
memory. Therefore, one depth camera cannot devide by multi-
GPU because we need to access neighbor pixels of image in
JBF. So the number of GPUs is decided as long as we use the
depth cameras. Next, we find corresponding the depth cameras
and color cameras. For example, when we use eight color
cameras and three depth cameras, we can use up to three GPUs,
one and another depth camera is warped to three color camera
positions, and the other depth camera is warped to two color
cameras, respectively.

2) Pre-calculating warping matrices: Equations (1) and (2)
represent the 3D warping process. Subscripts l and r denote left
and right, these mean source and destination, respectively. A, R,
T, Mw, and m are intrinsic matrix, rotation matrix, translation
matix, 3D image point, and 2D image point, respectively [2]. In
this equation, before the 3D warping process, and

is calculated each depth camera and , and
is calculated each color camera, in advance respectively.

Thus, we transfer these matrices to each GPU memory in
advance for fast 3D warping process.

3) Pre-calculating Gaussian filter table: (3), (4), and (5)
represent the formulas necessary for Gaussian filter table
generation. This table is used to generate the depth values in
JBF process. (u, v) and (x, y) are image coordinates. We can
create this table by inputting radius and value. Thus, we
transfer this table to constant memory of each GPU in advance
for fast JBF process.

B. Image load
First, we load all color and depth images that will be

processed before starting image processing because image load
from files is slow. Next, we convert all loaded images to 4-byte
data types because GPU memory access and operation are fast
at 4-byte units. Color images are represented by pixel values in
4-byte float types per channel. Depth images contain camera-
to-object distance data, stored in 4-byte float types. We create
arrays that collect converted color and depth data. Thus, we
simplify the image data transfer to each GPU memory using the
4-byte float type arrays.

C. Circular queue for GPU memory
We use a circular queue that is implemented using the C++

standard template library (STL) for fast image processing [6].
All spaces of the circular queue are allocated as GPU memory.
The results of generated depth maps are saved to single space
of circular queue. Each index of the circular queue is decided
by modulo operation of current frame number by circular queue
size. All spaces of the circular queue can be reused if results of
generated depth maps are completely processed. Fig. 4 shows
an example of the circular queue memory status. Indices 0 and
1 of the circular queue are completely processed. Indices of 2,
3 and 4 were generated depth maps but these are being waited
for saving the results of generated depth maps, and the
remainder is never used. Thus, the circular queue in the figure
shows that the sixth frame is being processed.

Fig. 4 Circular queue memory status

(1)
(2)

(3)
(4)
(5)

ICESIT 2014 Conference Proceeding

- 104 -



Fig. 5 Results of generated depth maps after 3D warping

Fig. 6 Results of generated depth maps after JBF

D. Image processing
Image processing comprises three steps: transferring the

4-byte float type arrays of color and depth data to each GPU
memory, executing the 3D warping and JBF by calling a GPU
kernel function, and receiving results of generated depth
maps. Each GPU kernel function is called at the same time
using parallel patterns library (PPL). The PPL partitions work
in an optimal way given the available number of computing
resources [7]. Thus, we reduce a GPU starvation using the
PPL.

E. Save results and free memory
After one frame is completed image processing, results of

generated multi-view depth maps are saved as image files,
respectively. For promptly image processing of next frame,
image saving is handled by CPU thread that was called before
starting the image processing. This thread continually
watches the circular queue whether multi-view depth maps
are generated. This thread is exited with freeing used
memories after saving all frames of generated multi-view
depth maps.

IV. EXPERIMENTALRESULTS
We proceeded with five sets of experiments for the

evaluation of multi-view depth generation performance using
CUDA multi-GPU. The sets are defined in Table 1. We used
the graphics card for all cases, GeForce GTX TITAN. The
captured resolutions are 1280×720 and 176×144 for color and
depth images, respectively. The filter radius for JBF is 15, and
the number of processed frames is 90. Fig. 5 and Fig. 6 show
the results of generated depth maps after 3D warping and JBF,
respectively.

The depth generation speed only include image processing
step in the proposed multi-view depth generation method
operation. Set 2 and 5 show optimal conditions of multi-GPU
is best for generating multi-view depth maps when one depth
camera is processed by one GPU, respectively. Set 1 and 3
represent multi-view depth generation speed using single-
GPU, respectively. On the other hand, set 4 shows double-
GPUs performance is better than single-GPU, but the image
processing cannot be optimized due to the GPU starvation that
two color cameras and one depth camera are processed later.

TABLE I. MULTI-GPU EXPERIMENTMETHODS

Set Color Cameras Depth Cameras The number
of GPUs Fps

1 6 2 1 23.05
2 6 2 2 33.49
3 8 3 1 17.14
4 8 3 2 21.19
5 8 3 3 34.08

V. CONCLUSION
In this paper, we proposed a CUDA multi-GPU

implementation for real-time generation of high-resolution
multi-view depth maps. We warp low-resolution depth
information to color camera positions and then execute JBF.
We employ multi-GPU to accelerate the computation. As a
result, eight views of depth maps were generated at 34 fps.

When watching multi-view depth generation speed, we
can use real-time generated multi-view depth maps for
generating 3D contents by implementing a module that
directly receive the color and depth data from cameras.

ACKNOWLEDGMENT

-Ministry Giga

Planning, Republic of Korea (ROK). [GK13C0100,
Development of Interactive and Realistic Massive Giga-
Content Technology]

REFERENCES
[1] J. Jung and -view Image Generation Using Single-view

Color Image and Low-resolution Depth Map International
Conference on Embedded Systems and Intelligent Technology
(ICESIT), pp. 114-117, Jan. 2013.

[2] Y. Song, D.W. Shin, E. Ko, and -time Depth Map
Generation Using Hybrid Multi-view Cameras submitted to Asia-
Pacific Signal and Information Processing Association (APSIPA), Dec.
2014.

[3] S.Y. Kim and Y.S. Ho, -Preserving Depth Image
Upsampler IEEE Transactions on Consumer Electronics, vol. 58, no.
3, pp. 971-977, Aug. 2012.

[4] J. Sanders and E. Kandrot, CUDA by example: an introduction to
general-purpose GPU programming. Addison-Wesley Professional,
July 2010.

[5] CUDA Toolkit Documentation v6.0, http://docs.nvidia.com/cuda
[6] Vector Class, http://msdn.microsoft.com/en-us/library/9xd04bzs.aspx
[7] PPL, http://msdn.microsoft.com/en-us/library/dd470426.aspx

ICESIT 2014 Conference Proceeding

- 105 -


